Policy Search in Reproducing Kernel Hilbert Space

نویسندگان

  • Ngo Anh Vien
  • Peter Englert
  • Marc Toussaint
چکیده

Modeling policies in reproducing kernel Hilbert space (RKHS) renders policy gradient reinforcement learning algorithms non-parametric. As a result, the policies become very flexible and have a rich representational potential without a predefined set of features. However, their performances might be either non-covariant under reparameterization of the chosen kernel, or very sensitive to step-size selection. In this paper, we propose to use a general framework to derive a new RKHS policy search technique. The new derivation leads to both a natural RKHS actor-critic algorithm and a RKHS expectation maximization (EM) policy search algorithm. Further, we show that kernelization enables us to learn in partially observable (POMDP) tasks which is considered daunting for parametric approaches. Via sparsification, a small set of “support vectors” representing the history is shown to be effectively discovered. For evaluations, we use three simulated (PO)MDP reinforcement learning tasks, and a simulated PR2’s robotic manipulation task. The results demonstrate the effectiveness of the new RKHS policy search framework in comparison to plain RKHS actor-critic, episodic natural actor-critic, plain actor-critic, and PoWER approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method

The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...

متن کامل

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

متن کامل

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

Solving integral equations of the third kind in the reproducing kernel space

A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016